176 research outputs found

    An Agent-Based Approach to Self-Organized Production

    Full text link
    The chapter describes the modeling of a material handling system with the production of individual units in a scheduled order. The units represent the agents in the model and are transported in the system which is abstracted as a directed graph. Since the hindrances of units on their path to the destination can lead to inefficiencies in the production, the blockages of units are to be reduced. Therefore, the units operate in the system by means of local interactions in the conveying elements and indirect interactions based on a measure of possible hindrances. If most of the units behave cooperatively ("socially"), the blockings in the system are reduced. A simulation based on the model shows the collective behavior of the units in the system. The transport processes in the simulation can be compared with the processes in a real plant, which gives conclusions about the consequencies for the production based on the superordinate planning.Comment: For related work see http://www.soms.ethz.c

    Multi-scale analysis and modelling of collective migration in biological systems

    Get PDF
    Collective migration has become a paradigm for emergent behaviour in systems of moving and interacting individual units resulting in coherent motion. In biology, these units are cells or organisms. Collective cell migration is important in embryonic development, where it underlies tissue and organ formation, as well as pathological processes, such as cancer invasion and metastasis. In animal groups, collective movements may enhance individuals' decisions and facilitate navigation through complex environments and access to food resources. Mathematical models can extract unifying principles behind the diverse manifestations of collective migration. In biology, with a few exceptions, collective migration typically occurs at a 'mesoscopic scale' where the number of units ranges from only a few dozen to a few thousands, in contrast to the large systems treated by statistical mechanics. Recent developments in multi-scale analysis have allowed linkage of mesoscopic to micro- and macroscopic scales, and for different biological systems. The articles in this theme issue on 'Multi-scale analysis and modelling of collective migration' compile a range of mathematical modelling ideas and multi-scale methods for the analysis of collective migration. These approaches (i) uncover new unifying organization principles of collective behaviour, (ii) shed light on the transition from single to collective migration, and (iii) allow us to define similarities and differences of collective behaviour in groups of cells and organisms. As a common theme, self-organized collective migration is the result of ecological and evolutionary constraints both at the cell and organismic levels. Thereby, the rules governing physiological collective behaviours also underlie pathological processes, albeit with different upstream inputs and consequences for the group. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'

    How simple rules determine pedestrian behavior and crowd disasters

    Full text link
    With the increasing size and frequency of mass events, the study of crowd disasters and the simulation of pedestrian flows have become important research areas. Yet, even successful modeling approaches such as those inspired by Newtonian force models are still not fully consistent with empirical observations and are sometimes hard to calibrate. Here, a novel cognitive science approach is proposed, which is based on behavioral heuristics. We suggest that, guided by visual information, namely the distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive procedures to adapt their walking speeds and directions. While simpler than previous approaches, this model predicts individual trajectories and collective patterns of motion in good quantitative agreement with a large variety of empirical and experimental data. This includes the emergence of self-organization phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves. Moreover, the combination of pedestrian heuristics with body collisions generates crowd turbulence at extreme densities-a phenomenon that has been observed during recent crowd disasters. By proposing an integrated treatment of simultaneous interactions between multiple individuals, our approach overcomes limitations of current physics-inspired pair interaction models. Understanding crowd dynamics through cognitive heuristics is therefore not only crucial for a better preparation of safe mass events. It also clears the way for a more realistic modeling of collective social behaviors, in particular of human crowds and biological swarms. Furthermore, our behavioral heuristics may serve to improve the navigation of autonomous robots.Comment: Article accepted for publication in PNA

    A knowledge-based view of the extending enterprise for enhancing a collaborative innovation advantage

    Get PDF
    In animal societies as well as in human crowds, many observed collective behaviours result from self-organized processes based on local interactions among individuals. However, models of crowd dynamics are still lacking a systematic individual-level experimental verification, and the local mechanisms underlying the formation of collective patterns are not yet known in detail. We have conducted a set of well-controlled experiments with pedestrians performing simple avoidance tasks in order to determine the laws ruling their behaviour during interactions. The analysis of the large trajectory dataset was used to compute a behavioural map that describes the average change of the direction and speed of a pedestrian for various interaction distances and angles. The experimental results reveal features of the decision process when pedestrians choose the side on which they evade, and show a side preference that is amplified by mutual interactions. The predictions of a binary interaction model based on the above findings were then compared to bidirectional flows of people recorded in a crowded street. Simulations generate two asymmetric lanes with opposite directions of motion, in quantitative agreement with our empirical observations. The knowledge of pedestrian behavioural laws is an important step ahead in the understanding of the underlying dynamics of crowd behaviour and allows for reliable predictions of collective pedestrian movements under natural conditions

    Swarm-based adaptation:wayfinding support for lifelong learners

    Get PDF
    Please refer to the orinigal publication in: Tattersall, C. Van den Berg, B., Van Es, R., Janssen, J., Manderveld, J., Koper, R. (2004). Swarm-based adaptation: wayfinding support for lifelong learners. In P. de Bra & W. Nejdl, Adaptive Hypermedia and Adaptive Web-Based Systems (LNCS3137), (pp. 336-339). Heidelberg: Springer. http://www.springerlink.com/index/UW0DUG7KHTU0KBX9.This article introduces an approach to adaptive wayfinding support for lifelong learners based on self-organisation theory. It describes an architecture which supports the recording, processing and presentation of collective learner behaviour designed to create a feedback loop informing learners of successful paths towards the attainment of their learning objectives. The approach is presented as an alternative to methods of achieving adaptation in hypermedia-based learning environments which involve learner modelling

    Logistic Constraints on 3D Termite Construction

    Full text link
    Abstract. The building behaviour of termites has previously been modelled mathematically in two dimensions. However, physical and logistic constraints were not taken into account in these models. Here, we develop and test a three-dimensional agent-based model of this process that places realistic constraints on the diffusion of pheromones, the movement of termites, and the integrity of the architecture that they construct. The following scenarios are modelled: the use of a pheromone template in the construction of a simple royal chamber, the effect of wind on this process, and the construction of covered pathways. We consider the role of the third dimension and the effect of logistic constraints on termite behaviour and, reciprocally, the structures that they create. For instance, when agents find it difficult to reach some elevated or exterior areas of the growing structure, building proceeds at a reduced rate in these areas, ultimately influencing the range of termite-buildable architectures

    Swarm-based adaptation: wayfinding support for lifelong learners

    Get PDF
    Please refer to the orinigal publication in: Tattersall, C. Van den Berg, B., Van Es, R., Janssen, J., Manderveld, J., Koper, R. (2004). Swarm-based adaptation: wayfinding support for lifelong learners. In P. de Bra & W. Nejdl, Adaptive Hypermedia and Adaptive Web-Based Systems (LNCS3137), (pp. 336-339). Heidelberg: Springer. http://www.springerlink.com/index/UW0DUG7KHTU0KBX9.This article introduces an approach to adaptive wayfinding support for lifelong learners based on self-organisation theory. It describes an architecture which supports the recording, processing and presentation of collective learner behaviour designed to create a feedback loop informing learners of successful paths towards the attainment of their learning objectives. The approach is presented as an alternative to methods of achieving adaptation in hypermedia-based learning environments which involve learner modelling

    Computational modelling of cell motility modes emerging from cell-matrix adhesion dynamics

    Get PDF
    Animal sciencesAnalysis and Stochastic

    New directions for lifelong learning using network technologies

    Get PDF
    Please refer only to original source: Koper, R., Tattersall, C. (2004). New directions for lifelong learning using network technologies. British Journal of Educational Technology, 35 (6), 689-700.The requirements placed on learning technologies to support lifelong learning differ considerably from those placed on technologies to support particular fragments of a learning lifetime. The time scales involved in lifelong learning, together with its multi-institutional and episodic nature are not reflected in today’s mainstream learning technologies and their associated architectures. The article presents an integrated model and architecture to serve as the basis for the realization of networked learning technologies serving the specific needs and characteristics of lifelong learners. The integrative model is called a “Learning Network” (LN) and its requirements and architecture are explored, together with the ways in which its application can help in reducing barriers to lifelong learning
    corecore